The Single Vector Compressed Storage of Three Dimensional Upper Triangular Matrix

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixing of the Upper Triangular Matrix Walk

We study a natural random walk over the upper triangular matrices, with entries in the field Z2, generated by steps which add row i + 1 to row i. We show that the mixing time of the lazy random walk is O(n) which is optimal up to constants. Our proof makes key use of the linear structure of the group and extends to walks on the upper triangular matrices over the fields Zq for q prime.

متن کامل

Accelerated three-dimensional upper airway MRI using compressed sensing.

In speech-production research, three-dimensional (3D) MRI of the upper airway has provided insights into vocal tract shaping and data for its modeling. Small movements of articulators can lead to large changes in the produced sound, therefore improving the resolution of these data sets, within the constraints of a sustained speech sound (6-12 s), is an important area for investigation. The purp...

متن کامل

Folding of the triangular lattice in a discrete three-dimensional space: density-matrix renormalization-group study.

Folding of the triangular lattice in a discrete three-dimensional space is investigated numerically. Such "discrete folding" has come about through theoretical investigation, since Bowick and co-workers introduced it as a simplified model for the crumpling of the phantom polymerized membranes. So far, it has been analyzed with the hexagon approximation of the cluster variation method (CVM). How...

متن کامل

Three-dimensional optical storage

Keywords: volume holographic data storage, read-write holographic data storage, phase–conjugate readout, non-linear signal processing.

متن کامل

Involutions and characters of upper triangular matrix groups

We study the realizability over R of representations of the group U(n) of upper-triangular n× n matrices over F2. We prove that all the representations of U(n) are realizable over R if n ≤ 12, but that if n ≥ 13, U(n) has representations not realizable over R. This theorem is a variation on a result that can be obtained by combining work of J. Arregi and A. Vera-López and of the authors, but th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: DEStech Transactions on Computer Science and Engineering

سال: 2017

ISSN: 2475-8841

DOI: 10.12783/dtcse/icicee2017/17196